Noticias

Los algoritmos de reconocimiento facial ya «leen» el rostro aun con mascarilla

Una investigación revela que el software de reconocimiento facial desarrollado durante el inicio de la pandemia de COVID-19 está realizando un mejor trabajo para detectar rostros con mascarillas.

El informe realizado por el Instituto Nacional de Estándares y Tecnología (INET) mide el rendimiento de los algoritmos de reconocimiento facial creadas para la nueva normalidad que deja esta pandemia.

Estudios anteriores revelaban que el software a menudo tenía problemas con los rostros con mascarilla.

«El rendimiento actual del reconocimiento facial con máscaras faciales es comparable al estado de la técnica en imágenes sin máscara a mediados de 2017», encontró el estudio.

Estos algoritmos pueden realizar su trabajo incluso con el 70% del rostro cubierto, ya que puede detectar puntos claves en la nariz y ojos. NEC, uno de los proveedores de reconocimiento facial más grande del mundo, informó que desarrolló un algoritmo capaz de detectar el rostro centrándose en la posición y forma de la mascarilla en la cara.

El estudio del NIST no es un estudio cualquiera. Para la edición de diciembre han probado 65 algoritmos con 6,2 millones de imágenes.

Los resultados del estudio dejan ver una importante evolución. Es cierto que los algoritmos siguen fallando cuando la persona lleva mascarilla, pero bastante menos.

De acuerdo al NIST, los algoritmos más precisos tienen una tasa de error del 0,3% al detectar a personas sin mascarilla.

Con los algoritmos más precisos y una mascarilla cubriendo el 70% de la cara, la tasa de error es del alrededor del 5%. Los algoritmos menos precisos siguen fallando, pero la tasa de error oscila entre el 10% y el 40%. En palabras del NIST:

«Para algunos desarrolladores, las tasas de falso rechazo en sus algoritmos presentados desde mediados de marzo de 2020 disminuyeron hasta en un factor de diez sobre sus algoritmos prepandémicos, lo que es una prueba de que algunos proveedores están adaptando sus algoritmos para gestionar las máscaras faciales».

Otras conclusiones interesantes tienen que ver con el color y el tamaño de la mascarilla. En el estudio aplicaron mascarillas rojas, azul claro, rojas y negras. Las mascarillas negras y rojas provocan más fallos que las blancas y azules, no se sabe bien por qué. Además, las mascarillas más grandes también desembocan en más errores de detección.

El conjunto de imágenes consta de fotografías «recogidas en la solicitudes del gobierno de los Estados Unidos que están actualmente en funcionamiento», a saber «fotografías de solicitud de una población mundial de solicitantes de prestaciones de inmigración y fotografías de cruce de fronteras de viajeros que entran en los Estados Unidos». Afirman que «ambos conjuntos de datos se recopilaron para los procesos de viaje o de inmigración autorizados».

Redacción

Entradas recientes

Fraudes en venta de vehículos siguen al alza en redes sociales mexicanas

Un auto a buen precio, entrega inmediata y trato directo por redes sociales. Suena conveniente,…

6 horas hace

Menos hospitalizaciones gracias a nuevas terapias de precisión

La medicina del futuro ya se está ensayando en los laboratorios y hospitales de Europa.…

6 horas hace

Una joya estilo Zelda que revive gracias a PS Plus

Hay juegos que no arrasaron en ventas ni premios, pero que se ganan el corazón…

10 horas hace

Inteligencia artificial para revivir fallecidos inquieta a usuarios y expertos

No es ciencia ficción, tampoco un episodio nuevo de Black Mirror. Una startup estadounidense llamada…

1 día hace

Películas de Hollywood que se grabaron en México

Hay algo en la mezcla de historia, naturaleza y caos urbano que vuelve a México…

1 día hace

Redes sociales: ¿una cuenta ya no es suficiente?

Ya no basta con tener “la cuenta oficial”. En México, cada vez más marcas y…

1 día hace