Noticias

Los algoritmos de reconocimiento facial ya «leen» el rostro aun con mascarilla

Una investigación revela que el software de reconocimiento facial desarrollado durante el inicio de la pandemia de COVID-19 está realizando un mejor trabajo para detectar rostros con mascarillas.

El informe realizado por el Instituto Nacional de Estándares y Tecnología (INET) mide el rendimiento de los algoritmos de reconocimiento facial creadas para la nueva normalidad que deja esta pandemia.

Estudios anteriores revelaban que el software a menudo tenía problemas con los rostros con mascarilla.

«El rendimiento actual del reconocimiento facial con máscaras faciales es comparable al estado de la técnica en imágenes sin máscara a mediados de 2017», encontró el estudio.

Estos algoritmos pueden realizar su trabajo incluso con el 70% del rostro cubierto, ya que puede detectar puntos claves en la nariz y ojos. NEC, uno de los proveedores de reconocimiento facial más grande del mundo, informó que desarrolló un algoritmo capaz de detectar el rostro centrándose en la posición y forma de la mascarilla en la cara.

El estudio del NIST no es un estudio cualquiera. Para la edición de diciembre han probado 65 algoritmos con 6,2 millones de imágenes.

Los resultados del estudio dejan ver una importante evolución. Es cierto que los algoritmos siguen fallando cuando la persona lleva mascarilla, pero bastante menos.

De acuerdo al NIST, los algoritmos más precisos tienen una tasa de error del 0,3% al detectar a personas sin mascarilla.

Con los algoritmos más precisos y una mascarilla cubriendo el 70% de la cara, la tasa de error es del alrededor del 5%. Los algoritmos menos precisos siguen fallando, pero la tasa de error oscila entre el 10% y el 40%. En palabras del NIST:

«Para algunos desarrolladores, las tasas de falso rechazo en sus algoritmos presentados desde mediados de marzo de 2020 disminuyeron hasta en un factor de diez sobre sus algoritmos prepandémicos, lo que es una prueba de que algunos proveedores están adaptando sus algoritmos para gestionar las máscaras faciales».

Otras conclusiones interesantes tienen que ver con el color y el tamaño de la mascarilla. En el estudio aplicaron mascarillas rojas, azul claro, rojas y negras. Las mascarillas negras y rojas provocan más fallos que las blancas y azules, no se sabe bien por qué. Además, las mascarillas más grandes también desembocan en más errores de detección.

El conjunto de imágenes consta de fotografías «recogidas en la solicitudes del gobierno de los Estados Unidos que están actualmente en funcionamiento», a saber «fotografías de solicitud de una población mundial de solicitantes de prestaciones de inmigración y fotografías de cruce de fronteras de viajeros que entran en los Estados Unidos». Afirman que «ambos conjuntos de datos se recopilaron para los procesos de viaje o de inmigración autorizados».

Redacción

Entradas recientes

Maneras de vencer el burnout

Aunque el cansancio puede ser una vivencia común en una vida activa, llegar a un…

11 horas hace

Norman Hagemeister transforma Georgia James con alta cocina sensorial

Georgia James, el legendario steakhouse texano ubicado en el distrito de Montrose en Houston, entra…

1 día hace

Crean sangre artificial en polvo para emergencias

Un equipo de científicos de la Universidad de Maryland ha creado un tipo de sangre…

1 día hace

Bari Ristorante redefine la hospitalidad bajo visión de Norman Hagemeister

Norman Hagemeister, reconocido por su enfoque en la innovación financiera y el impacto social, ha…

2 días hace

IA reconstruye textos antiguos incompletos

Aeneas, una nueva herramienta basada en inteligencia artificial (IA), predice las partes que faltan en…

2 días hace

Logran ver el interior del Volcán Popocatépetl con IA

Un grupo de científicos mexicanos logró “ver” el interior del volcán Popocatépetl mediante un innovador…

3 días hace